

The relation between individual differences in speech-gesture behavior of 4-year-olds across three different experimental tasks

Olga Abramov, Ulrich Mertens, Stefan Kopp, Katharina Rohlfing, Friederike Kern and

Introduction

Spoken language and co-speech iconic gestures refer to the same cognitive representation [1]. They are systematically organized in relation to one another, but do not necessarily express identical aspects [2]. Rather, iconic gestures can complement speech highlighting different aspects of the referent [1]. Holler and Beatie [3] argue, however, that speech and gesture are more flexibly integrated, depending on the communicative intention of the speaker and they hypothesize that **semantic features** (SF) in gesture and speech vary according to communicative demands.

In addition, internal factors like age, cognitive skills, etc. can influence speech-gesture behavior. Given that the speech system of a 4-year old is still under development, do differences in cognitive skills result in a different speech-gesture behavior?

Here, we address the following questions:

- How are semantic features distributed in children's speech and gesture?
- How does the distribution vary with different situational demands?
- How are children's cognitive skills related to the use of semantic features in speech and gesture?

Procedure

Semantic features

Approach: assessing semantic features [4] in speech, gesture and overlap per utterance, per child and task (report, retelling and explanation).

Entity:	refers to objects
Action:	any kind of action
Manner:	the manner of an action
Direction:	directions
Shape:	object forms
Property:	properties of objects
Amount:	numerals, > 2 objects
Relative Position:	spatial relation between >1 objects
Shape: Property: Amount:	object forms properties of objects numerals, > 2 objects

Results

task	# SF-speech	# SF-gesture	# SF-overlap
RETELLING	M = 0.86, SD = 0.13	M = 0.05, SD = 0.05	M = 0.07, SD = 0.12
REPORT	M = 0.39, SD = 0.22	M = 0.26, SD = 0.15	M = 0.26, SD = 0.15

German preschool children (n=40) at the age of 4 participated in our study. During the first session children completed three different communicative tasks. At the second session they completed the non-verbal Intelligence Test SON-R 2.5-7 (SON-IQ).

Communicative Tasks

stimulus

report

Situations

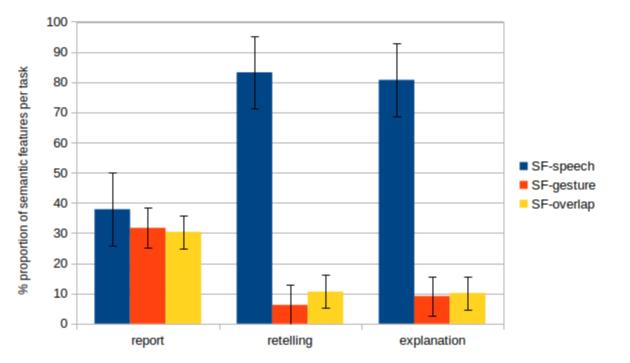
task

retelling

Reasoning

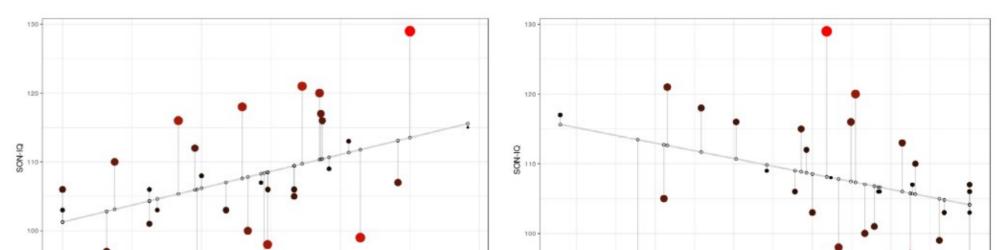
1 day delay

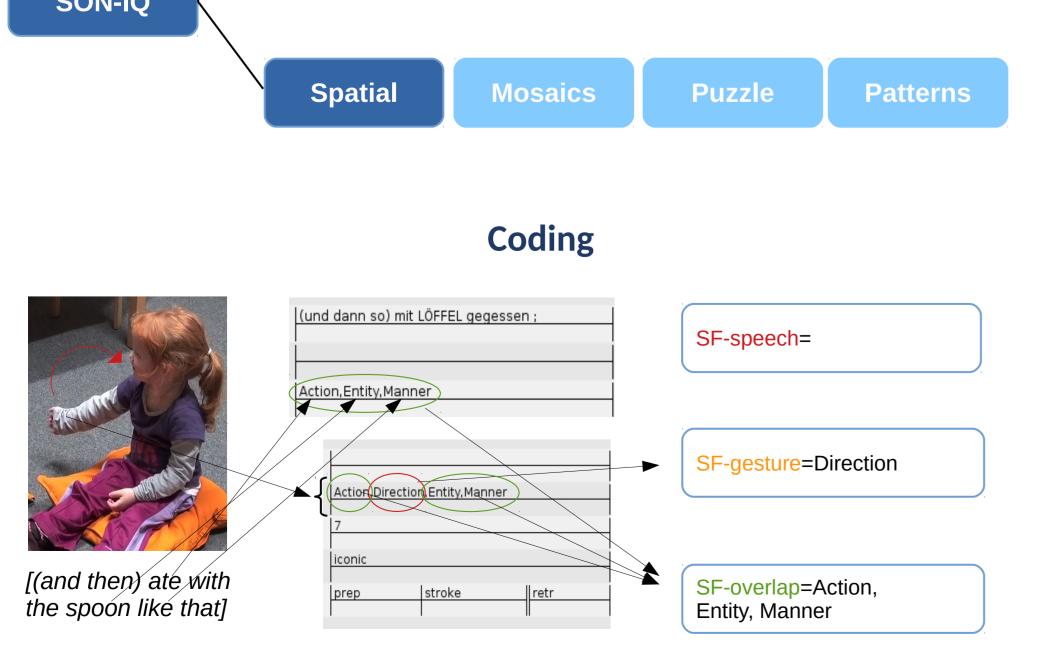
Analogies

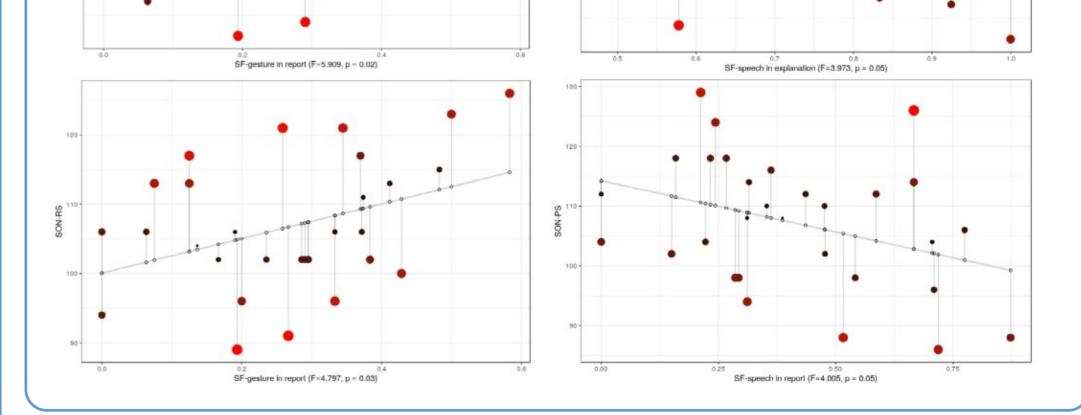

Categories

EXPLANATION M = 0.84, SD = 0.12 M = 0.08, SD = 0.07 M = 0.09, SD = 0.08

Strategies


report: significantly differs from other tasks with respect to all strategies (Wilcoxon test: p<0.001)


no differences between retelling and explanation



Cognitive Skills

task/strat	tegy	SON-IQ	SON-RS	SON-PS
retelling	SF-sp	p = 0.367, SE = 10.74	p = 0.964, SE = 12.11	p = 0.248, SE = 13.73
	SF-ge	p = 0.798, SE = 28.35	p = 0.782, SE = 31.49	p = 0.587, SE = 36.44
	SF-ov	p = 0.308, SE = 25.723	p = 0.589, SE = 28.97	p = 0.353, SE = 33.31
report	SF-sp	p = 0.118, SE = 6.79	p = 0.782, SE = 7.88	p=0.0551, SE=8.575
	SF-ge	p=0.0217, SE=10.08	p=0.037, SE=11.39	p = 0.183, SE = 13.87
	SF-ov	p = 0.209, SE = 11.28	p = 0.834, SE = 12.89	p = 0.13, SE = 14.38
explanation	SF-sp	p=0.0561, SE=11.10	p = 0.284, SE = 12.91	p = 0.0906, SE = 14.54
	SF-ge	p = 0.12, SE = 21.71	p = 0.261, SE = 24.63	p = 0.222, SE = 28.49
	SF-ov	p=0.06, SE=19.25	p = 0.404, SE = 22.52	p=0.0697, SE=24.96

References

[1] McNeill, David (1992). Hand and Mind: What Gestures reveal about thought. University of Chicago Press, [2] McNeill and Duncan, "Growth points in thinking for speaking," in Language and gesture, D. McNeill, Ed. Cambridge, UK: Cambridge University Press, 2000, pp. 141–161, [3] Holler, Judith & Beattie, Geoffrey. (2003). How iconic gestures and speech interact in the representation of meaning: Are both aspects really integral to the process?. Semiotica. 146. 81-116, [4] Bergmann, Kirsten & Kopp, Stefan. (2006). Verbal or visual? How information is distributed across speech and gesture in spatial dialog.